
Entropy viscosity (EV) method for solving non-
linear conservation laws
Why EV?
Spectral methods are well known for efficient performance: They only need a
relative low number of degrees of freedom to be able to approximate smooth
solutions for a given accuracy compared to finite difference codes. However,
spectral methods are ill-suited to approximate non smooth problems. This is
because the Gibbs and Runge phenomena start to spoil the convergence rate
and accuracy in these cases. Nevertheless, problems of interest often posses
discontinuous solutions or solutions with insufficient analyticity, e.g. non smooth
pressure distribution of matter that indicates the surface of a star (contact
discontinuity).

Over the years different approaches have been developed that aim to circumvent
the convergence problems of spectral methods. Among those methods is the EV
method Guermond and Pasquetti (2008) which is the topic of this project.

How does it work?
Consider a 1D conservation law of the form

𝜕𝑡𝑢 + 𝜕𝑥𝑓(𝑢) = 0,

where 𝑓(𝑢) is the flux function. If 𝑓(𝑢) = 1
2 𝑢2, then one obtains Burgers’ equa-

tion. This equation is well known to develop discontinuous solutions, e.g. when
evolving a sine wave over a periodic grid.

The EV method is a modification of the much earlier established artificial viscos-
ity (AV) approach. The idea of the AV method is to augment a given conserva-
tion law with an additional term that contains a second order spatial derivative
times a small constant, e.g.

𝜕𝑡𝑢 + 𝜕𝑥𝑓(𝑢) = 𝜕𝑥(𝜈𝜕𝑥𝑢),

𝜈 is called viscosity, because this additional term mimics a diffusive contribution.
The addition of this diffusive term causes the solution to smooth out over time.
If 𝜈 → 0 then the initial equation is recovered.

To approximate the unmodified PDE as good as possible, the AV and EV
method model the viscosity 𝜈 as a nonlinear function depending on 𝑢. The
difference between AV and EV is how 𝜈 is constructed. Focusing on the EV
method, 𝜈 is constructed based on the so-called entropy inequality

𝜕𝑡𝐸(𝑢) + 𝑓 ′(𝑢)𝜕𝑥𝐸(𝑢) ≤ 0,

where 𝐸 is termed entropy (in reference to physical problems). The above
inequality arises as a necessary condition for the selection of a unique solution
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from studying the weak form of a 1D conservation law, cf. LeVeque (1992). The
essence of this inequality is that 𝐸𝑡 + 𝑓 ′𝐸𝑥 should be only non zero in regions
with very steep gradients and discontinuities. This makes it a good candidate
for a shock detector, because it flags potential troubled cells. Constructing 𝜈
based on the entropy inequality should then lead to a smoothing of the solution
only in those regions where it should be necessary.

Numerical implementation
Implementing the EV method is straight forward: Firstly, one has to code a
convection-diffusion problem. This is described in some text books, cf. Hes-
thaven and Warburton (2007) for a DG implementation. Given a working
convection-diffusion problem, one can apply the EV method by simply com-
puting the entropy viscosity 𝜈 before evaluating the time derivative of 𝑢.

According to Guermond and Pasquetti (2008), Zingan et al. (2013), in the 1D
case there are two parameters that need to be adjusted. One is used to limited
the viscosity to a maximum and to avoid too extensive diffusion. Another one
is used to adjust the sensitivity of the method.

First results
Below follow plots of results of test calculations that show that the method does
work and improve simulation results.

Pseudospectral method

Figure 1 shows the time evolution of sine wave initial data computed with a
Pseudospectral approximation and the EV method turned on. This is a test
case to check if the entropy viscosity does not introduce undesired diffusion
for smooth problems. The plotted solution qualitatively agrees with the one
computed without EV (and also the analytic solution).

Figure 2 shows the time evolution of sine wave initial data computed with a
Pseudospectral approximation and the EV method turned off. As one can see
the solution is dominated by oscillations. In figure 3 the result of the same
calculation but with enabled EV is plotted. Clearly, in this case EV does its job
and avoids spurious oscillations. This result also qualitatively agrees with the
analytic solution of the 1D Burgers’ equation (TODO provide reference).

Discontinuous Galerkin method

Figure 4 shows the time evolution of a theta function initial data computed with
a DG approximation. The sharp edged rectangle shows the initial data and the
oscillating line corresponds to the evolved data. The analytic solution to this
problem would agree with the initial data after it has been evolved for 𝑇 = 1,
which corresponds to one full revolution in the periodic domain. However, we
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Figure 1: Time evolution of sine wave initial data with the advection equation
on a periodic interval using a Pseudospectral method. EV method activated,
𝑐𝑒 = 1.0, 𝑐𝑚𝑎𝑥 = 0.5.
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Figure 2: Time evolution of sine wave initial data with the Burgers’ equation on
a periodic interval using a Pseudospectral method. EV method not activated,
𝑐𝑒 = 0.0, 𝑐𝑚𝑎𝑥 = 0.0.
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Figure 3: Time evolution of sine wave initial data with the Burgers’ equation
on a periodic interval using a Pseudospectral method. EV method activated,
𝑐𝑒 = 10.0, 𝑐𝑚𝑎𝑥 = 0.8.
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Figure 4: Time evolution of theta function initial data with the advection equa-
tion on a periodic interval using a DG method. EV method not activated, see
plot for parameters.
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Figure 5: Time evolution of theta function initial data with the advection equa-
tion on a periodic interval using a DG method. EV method activated, see plot
for parameters.
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Figure 6: Time evolution of theta function initial data with the advection equa-
tion on a periodic interval using a DG method. EV method activated, see plot
for parameters.
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observe that if EV is not turned, undesired oscillations are present. Comparing
this result with figures 5, 6, we see that EV does its job. The difference between
the last two plots is the difference in resolution. Increasing the polynomial
order 𝑁 and the number of grid elements 𝐾 shows that the shocks are resolved
sharper.
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Figure 7: Time evolution of sine wave initial data with the Burgers’ equation
on a periodic interval using a DG method. EV method activated, see plot for
parameters.

Figures 7, 8 show the time evolution of sine wave initial date computed with a
DG approximation. Both plots show a rather sharped edged curve as the final
state at 𝑇 = 0.6. These results differ from the ones discussed in the previous
section, because there the time evolution has only been carried out till 𝑇 = 0.25,
which is when the shock is fully developed. The addition of EV allows to evolve
data even if shocks have already been developed. The presented solution is
indeed the correct one, cf. Yu, Yan, and Jiang (2018) (they show results for
𝑇 = 0.3 for a flux function 𝑓(𝑢) = 𝑢2). When comparing the two plots directly
one notices that some oscillations remain for the case where 𝑁 is even and 𝐾
is odd. Such differences are also observed in calculations without EV and are
closely connected with the parity of 𝑁, 𝐾, e.g. with the grid point placement
and cell division of the computational domain. This needs further investigation.
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Figure 8: Time evolution of theta function initial data with the Burgers’ equa-
tion on a periodic interval using a DG method. EV method activated, see plot
for parameters.
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Summary and current status
I have briefly outlined the motivation and basic idea that underlies the EV
method. I have then presented first tests and results that confirm that the
EV method does work and gives considerable improvement for problems with
discontinuous data.

The above results were produced using a Julia package evm.jl I wrote. At the
time of writing these notes the package is capable of solving - 1D advection
equation, - 1D Burgers’ equation, - general (nonlinear) conservation laws (not
tested) with periodic boundary conditions and the EV method.

What is next?
• Quantify convergence rates for 1D problems.
• Solve (special relativistic) Euler’s equation in 1D.
• Make comparison with Yorgos’ finite difference results.
• Implement EV method in BAMPS:

– Study 3D problems (TOV star).
• Investigate alternative artificial viscosity approaches

– Averaged modal decay model, Klöckner, Warburton, and Hesthaven
(2011),

– Other methods discussed in Yu and Hesthaven (2017).
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