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1 The problem

We want to study [3, section 2.2] which investigates the Abraham and Evans papers and
challenges their results. In particular, the problem at hand is finding the solution to
the constraint equations of General Relativity for a "time asymmmetric" initial slice of
spacetime. The following assumptions are taken directly from [3], which in turn empha-
size that its their interpretation of what was supposedly worked out in the Abrahams and
Evans papers. That is, in spherical coordinates (r, θ, ϕ) the induced metric is assumed
to be conformally flat, whereas the extrinsic curvature should be maximally sliced and
non-rotating, e.g.

(γij) = ψ4

1 0 0
0 r2 0

0 0 r2 sin(θ)2

 , (Ki
j) =

Kr
r Kr

θ 0
Kθ
r Kθ

θ 0
0 0 Kϕ

ϕ

 , (1)

where maximal slicing implies K := Ki
i = Kr

r + Kθ
θ + Kϕ

ϕ = 0. Furthermore, the
component Kr

θ is assumed to be given function of r, θ.
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The Hamiltonian and Momentum constraints in vacuum read [1, section 3]

H = R +K2 +KijKij = 0, (2)
M = Dj(K

ij − γijK) = 0, (3)

where R is the Ricci scalar associated with γij and Di is a covariant derivative that
is compatible with γij. Plugging in the above Ansätze into these equations yields the
following system of PDEs for the unknowns ψ,Kr

r , K
θ
θ (taken verbatim from [3])

0 = − 8

ψ5
∆ψ +Ki

jK
j
i ,

0 = ∂rK
r
r +

6Kr
r∂rψ

ψ
+

6Kr
θ∂θψ

r2ψ
+

3

r
Kr
r +

1

r2
∂θK

r
θ +

1

r2 tan(θ)
Kr
θ ,

0 = −∂θKr
r − ∂θKϕ

ϕ −
6(Kr

r +Kϕ
ϕ)∂θψ

ψ
−
Kr
r + 2Kϕ

ϕ

tan(θ)
+

6Kr
θ∂rψ

ψ
+

2Kr
θ

r
.

(4)

(5)

(6)

Does this version of the equations contain the missing factor Daniela discovered?

After stating the equations [3] proceeds to discuss the choice forKr
θ they think Abrahams

and Evans used in their work as well as their own version. I think in one of the later
chapters he talks in more detail about the numerical implementation, which I think
just uses a standard pseudospectral method an a Newton-Raphson scheme to solve the
resulting non-linear algebraic equations.

After all, it appears that the problem is already solved. So why bother? Well, Daniela
might wanna study other variations of this kind of initial data in the future and so it
could certainly be of no harm if one understands the problem a bit better. Furthermore,
Khrinov did not succeed in reproducing Abrahams’ and Evan’s data so there remains
the question of whether they overlooked something or not.

A few observations follow:

1. All three equations are coupled.

2. Kr
θ takes the role of a source term in all equations.

3. What boundary conditions should be applied? (Probably asympotic flatness and
regularity around the coordinate origin as well as regularity along the symmetry
axis and reflection symmetri across an equatorial plane.)

4. The PDEs are first order in Kr
r , K

θ
θ and second order in ψ.
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2 Attempted solution

2.1 Initial idea for alternative approach

The initial idea for this came when trying to rewrite the above equations using the
methods presented in [1, section 3.1.3] on conformal transformations of the extrinsic
curvature (keyword vector potential). After playing around for a bit I realized that the
source term Kr

θ are somehow in the way. So I was wondering whether one could proceed
an approach similiar to what helped me with solving the Rotating Mass Shell (RMS)
problem, that is, solve a different but simpler problem first and then use the source
terms to construct the desired solution. This kind of approach to problem solving is not
really new, but instead often goes under the phrase picking the right coordinate system
for the right problem (source: myself).

The starting point for the RMS problem was to realized that axisymmetric stationary
vacuum spacetimes are characterized exactly by only three metric potentials in Weyl-
Lewis-Papapetrou coordinates, whereas I have always worked with four. As it turned
out (although I knew this for quiet some time) the superficial fourth potential is just the
conformal factor that relates these Weyl coordinates with the quasi-isotropic coordinates
the RMS problem was posed with.

The problem at hand is similar but also quite different from the RMS problem. Firstly,
the RMS problem aimed to construct a solution to the full Einstein field equations
(EFEs) for a stationary spacetime. That is, the resulting potentials also include infor-
mation on a particular slicing. Whereas here, we are only concerned with the constraint
equations without making any reference to how that initial slice will later be embedded
into a time evolution. The two problems have in common that they both are concerned
with vacuum spacetimes (the matter part in the RMS problem is confined to an infinitely
thin shell) and axisymmetry. One might naively say that the problem at hand appears
to be simpler, because it does not involve rotation, but that is probably not true.

2.2 Simplifying the Ansatz

Arguably, a simpler problem to solve would be the one where Kr
θ = 0. In this case the

Ansatz for Ki
j would become diagonal which in turn would simplify a vector potential

formulation of Kij. Assuming Kr
θ = 0, however, is not of much help unless we can show

that a problem where Ki′j′ is diagonal is equivalent to the initial problem and can be
related through a coordinate transformation.

As a starting point we recall a theorem about eigen systems that often finds application
in quantum mechanics class (and I think also when studying (quasi-)normal oscillations
in mechanics, not 100% sure though): A set of diagonalizable matrices commutes if
and only if the set of matrices is simultaneously diagonalizable [4, 2]. Given that γij
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is already diagonal, hence, also commutes with Kij, it is tempting to apply the above
theorem and try to find a new coordinate system in which both are diagonal.

We will now switch up notation. Let (xi
′
) = (r′, θ′, ϕ′) denote the coordinates we in-

troduced in section 1 and let’s put primes on all indices of all components used before.
Furthermore, we switch coordinates from spherical to cylindrical (xi

′
) = (ρ′, z′, ϕ′) and

rewrite (1) as

(γi′j′) =

1 0 0
0 1 0

0 0 ρ′2

 , (Ki′j′) =

Kρ′ρ′ Kρ′z′ 0
Kz′ρ′ Kz′z′ 0

0 0 Kϕ′ϕ′

 . (7)

We note that Kz′ρ′ = Kρ′z′ , whereas Kz′

ρ′ 6= Kρ′

z′ in general. The reason for using cylindri-
cal over spherical coordinates here is that it is simpler to deal with the transformations
later. Furthermore, this does not incure any loss of generality, because the transforma-
tion between those two systems is known analytically and does not require solving any
additional equations.

Next, we diagonalize Ki′j′ . To this end we compute its characteristic polynomial

det
(
Ki′j′ − λδi′j′

)
= ((Kρ′ρ′ − λ)(Kz′z′ − λ)−Kρ′z′2)(Kϕ′ϕ′ − λ) (8)

The eigenvalues are the zeros of the above polynomial and read

K± =
1

2
(Kρ′ρ′ +Kz′z′)± 1

2

√
(Kρ′ρ′ −Kz′z′)2 + 4Kρ′z′2, K0 = Kϕ′ϕ′

. (9)

The corresponding (normalized) eigenvectors read

v± = N±

K± −Kz′z′

Kρ′z′

0

 , v0 =

0
0
1

 , (10)

where N± = 1/
√
K2
± +Kzz2 +Kρz2 − 2KzzK±. TODO Not 100% sure if eigenvectors

are correct, because sympy did not simplify them nicely and I am too lazy to verify by
hand, plus they are irrelevant at the moment.

Because Ki′j′ is real symmetric, the matrix

J = (J i
′

j ) =
[
v+ v− v0

]
(11)

is orthogonal JT = J−1 and we can use it to construct the desired diagonal matrix

(Kij) = ((J−1)ii′K
i′j′J jj′) =

K+ 0 0
0 K− 0
0 0 K0

 . (12)
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This last equations suggests now that the diagonalizer J ii′ might be adopted as the Jacobi
matrix corresponding to a coordinate transformation of the form

ρ = ρ(ρ′, z′), z = z(ρ′, z′), (13)

such that

(dxi) =

[
dρ
dz

]
=

[
ρρ′ ρz′
zρ′ zz′

]
·
[
dρ′

dz′

]
= ((J−1)ii′dx

i′), (14)

(dxi
′
) =

[
dρ′

dz′

]
=

[
ρ′ρ ρ′z
z′ρ z′z

]
·
[
dρ
dz

]
= (J ii′dx

i). (15)

Because J is orthogonal and block diagonal, one might be tempted to rewrite it as

(J ii′) =

 cos(χ) sin(χ) 0
− sin(χ) cos(χ) 0

0 0 1

 , (16)

with

cos(χ) =
K+

N+

=
2Kρ′z′

N−
, sin(χ) =

K−
N−

= −2Kρ′z′

N+

, (17)

which emphasizes the orthogonality. However, this is too restrictive for our case. Indeed,
the following leads to a contradiction if χ 6= const.:

ρ′ρz = − sin(χ)χ,z, ρ′zρ = cos(χ)χ,ρ, ⇒ χ,z = −cos(χ)

sin(χ)
χ,ρ = − cot(χ)χ,ρ, (18)

z′ρz = − cos(χ)χ,z, z′zρ = − sin(χ)χ,ρ, ⇒ χ,z =
sin(χ)

cos(χ)
χ,ρ = tan(χ)χ,ρ. (19)

Hence, Ansatz (16) is not compatible with (15), because demanding that χ = const.
implies that (11) is constant which in turn implies that Ki′j′ is constant in space, which
seems too restrictive.

One way to resolve this issue is to introduce a new unknown scale factor σ(ρ, z) and
replace (16) with

(J ii′) = σ

 cos(χ) sin(χ) 0
− sin(χ) cos(χ) 0

0 0 1

 . (20)

The addition of σ now converts the transformations ρ(ρ′, z′), z(ρ′, z′) into a pair of har-
monic functions. That is, they can now be made to satisfy the integrability conditions

ρ′,ρz = ρ,zρ, z′,ρz = z′,zρ, (21)
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as well as the Cauchy-Riemann equations

ρ′,ρ = z′,z, ρ,z′ = −z′,ρ, (22)

and consequently must satisfy

∆cartρ
′ = ρ′,ρρ + ρ′,zz = 0, ∆cartz

′ = z′,ρρ + z′,zz = 0. (23)

Let us emphasize the occurence of the 2D cartesian Laplace operator ∆cart in the last
equation, which is distinct from the 3D cylindrical Laplace operator in axisymmetry
∆cyl = ∂ρρ+ 1/ρ ∂ρ+∂zz. From (21) we derive the following relations linking χ and σ,

χ,ρ =
σ,z
σ
, χ,z = −σ,ρ

σ
. (24)

This last relation says that once we gained knowledge about either χ or σ, we can
compute the respective other one and then construct the coordinate transformation
that allows us to map from ρ, z to ρ′, z′.

With the correct Jacobi matrix at hand we can write down the induced metric in the
new coordinates,

γij = Ψ4γ̄ij = Ψ4

1 0 0
0 1 0
0 0 V 2

 , V =
ρ′(ρ, z)

σ(ρ, z)
, Ψ4 = ψ(ρ′(ρ, z), z′(ρ, z))4σ(ρ, z)2.

(25)

What we have shown here is that if we can somehow get a handle on the quantities
K±, K0,Ψ, V , we can use the solution to (23) to obtain σ and then χ through (24) and
ultimately compute Kρ′ρ′ , Kz′z′ , Kϕ′ϕ′ using a source function Kρ′z′ re-parameterized by
ρ, z. To be honest, now written out explicitly this sounds more involved than solving
the initial problem. But perhaps the solution of the subproblems in this approach are
simpler then solving the PDEs (4)-(6) all at once.

2.3 Constraint equations with new Ansatz

We now write out the constraint equations (3) using Ansätze (12), (25) and the tricks
provided in [1, section 3.1.3].
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We start by noting that the assumption on maximal slicing K = 0 is a coordinate
invariant statement. In our adapted coordinates it reads

K = K+ +K− +K0 = 0. (26)

Consequently, we can ignore the trace part in the decomposition of Kij in [1] and just
write

Kij = Aij. (27)

The book then proceeds by applying a conformal transformation to Aij to then find

Aij = Ψ−10Āij, DjA
ij = D̄jĀ

ij, (28)

where D̄j is the covariant derivative associated with the conformal metric γ̄ij. Eventually,
one arrives at the following rewriting of (3)

8D̄2Ψ−ΨR̄ + Ψ−7ĀijĀ
ij = 0,

D̄jĀ
ij = 0.

(29)
(30)

We emphasize that this form of the constraint equations with Ansätze (12), (25) differs
by an additional factor R̄ which would have been absent from when casting the Ansätze
(1) into this form, because there the induced metric is conformally flat. We also note that
(30) is now coupled to (29) through the unknown V appearing in the conformal covariant
derivative, whereas in the initial formulation of the problem they were decoupled, because
of conformal flatness. Not sure if the last statement is correct, because also in the initial
formulation of the problem we have Kij = Aij = ψ−10Āij, but the PDE systems shows a
coupling between the equations for ψ and Kr

r , K
θ
θ . I remember looking into this already

(also using the vector potential formulation) and concluded that this is not really simpler.
Maybe I should check again?

Next [1] discusses how Āij can be further split,

Āij = ĀijTT + ĀijL , (31)

e.g. into a transverse-traceless part ĀijTT that satsifies

D̄jĀ
ij
TT = 0, (32)

as well as a symmetric, traceless gradient of a vector W i, called the longitudinal part

ĀijL = D̄iW j + D̄jW i − 2

3
γ̄ijD̄kW

k =: (L̄W )ij, (33)
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such that

D̄jĀ
ij
L = D̄j(L̄W )ij = D̄2W i +

1

3
D̄i(D̄jW

j) + R̄i
jW

j =: (∆̄LW )ij. (34)

Plugging this back into (30) we find

(∆̄LW )ij = 0. (35)

Is this enough to conclude that we only need to focus on the longitudinal part?

Let us investigate how the components of (35) look like. To this end we compute the
non-vanishing Christoffel symbols Γ̄ijk, the conformal Ricci tensor R̄i

j as well as the Ricci
scalar R̄ using my sympy notebook and we find

Γ̄ρϕϕ = −V V,ρ, Γ̄zϕϕ = −V V,z, Γ̄ϕρϕ = −V,ρ
V
, Γ̄ϕzϕ = −V,z

V
,

R̄ρ
ρ = −V,ρρ

V
, R̄z

z = −V,zz
V
, R̄ρ

z = −V,ρz
V
, R̄ϕ

ϕ = −∆cartV

V
,

R̄ = −2
∆cartV

V
.

(36)

(37)

(38)

We then evaluate (33) to find

Āρρ =
2

3

2VW ρ
,ρ − VW z

,z − V,ρW ρ − V,zW z

V
, (39)

Āzz =
2

3

−VW ρ
,ρ + 2VW z

,z − V,ρW ρ − V,zW z

V
, (40)

Āϕϕ =
2

3

−V (W ρ
,ρ +W z

,z) + 2V,ρW
ρ + 2V,zW

V 3
, (41)

Āρz = W ρ
,z +W z

,ρ, Āρϕ = Wϕ
,ρ, Āzϕ = Wϕ

,z . (42)

Because of (12) and (27) Āij is also diagonal,

(Āij) =

Āρρ 0 0
0 Āzz 0
0 0 Āϕϕ

 , (43)

which allows us to conclude that Wϕ = const. in this Ansatz, so w.l.o.g we set it to
zero,

(W i) =

W ρ

W z

0

 . (44)
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Furthermore, we obtain the identity

W ρ
,z = −W z

,ρ. (45)

Direct evaluation of (35) yields

0 = 3(∆̄W )ρ = 4W ρ
,ρρ + 2W ρ

,zz − 2
V,ρρ
V
W ρ − 2

V,ρz
V
W z + 4

V,ρ
V
W ρ
,ρ + 2

V,z
V
W ρ
,z

− 4
V 2
,ρ

V 2
W ρ − 4

V,ρV,z
V 2

W z,

0 = 3(∆̄W )z = 2W z
,ρρ + 4W z

,zz − 2
V,ρz
V
W ρ − 2

V,zz
V
W z + 2

V,ρ
V
W z
,ρ +

V,z
V
W z
,z

− 4
V 2
,z

V 2
W z − V,ρV,z

V 2
W ρ,

0 = (∆̄W )ϕ = Wϕ
,ρρ +Wϕ

,zz + 3
V,ρ
V
Wϕ
,ρ + 3

V,z
V
Wϕ
,z .

(46)

(47)

(48)

The last equation is automatically satisfied because of our choice Wϕ = 0 and can be
ignored. It remains to solve (46), (47) once we know how to determine V .

TODO

• Massage the W PDEs a bit more by undoing total derivatives.

• Expand the Hamiltonian equation with the new Ansatz.

• How should V be determined?

• Do we need to make reference to the diagonalization procedure to be able to solve
for V or σ such that it is then compatible with what we started with?
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