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Universality in axisymmetric vacuum collapse 
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Evidence of universality is observed in the critical behavior of axisymmetric vacuum gravitational 
collapse. The threshold of black hole formation in the future development of time-antisymmetric 
initial data is found numerically and compared to previous results based on ingoing pulses of gravi- 
tational waves. The power-law behavior of the black hole mass is again found near the critical point 
and the critical exponent value p E 0.36 is consistent with our previous determination despite stark 
differences in the two sets of initial data. Similar evidence of universality is exhibited by the scaling 
factor A of the echoes in the gravitational field produced in the central region of collapse. 

PACS number(s): 04.20.Jb, 02.60.Cb, 04.30.Nk; 97.60.Lf 

I. INTRODUCTION 

Critical phenomena have recently been shown to occur 
near the threshold of black hole formation in several types 
of gravitational collapse. This behavior was first observed 
in the collapse of scalar waves in spherical symmetry [I]  
and subsequently in the collapse of gravitational waves in 
axisymmetry (Ref. [2], hereafter paper 1). Critical phe- 
nomena have now also been observed in radiation fluid 
collapse [3]. The vacuum case is significant because it 
implies these phenomena are generic features of general 
relativity. 

A process for finding the threshold of black hole forma- 
tion and associated critical phenomena is to compute the 
future development S k b ]  of elements of single-parameter 
families of Cauchy data ,  with p labeling the data sets 
within a family and k labeling different families. So- 
lutions are computed numerically and the critical point 
p* of onset of black hole formation in any family is nar- 
rowed down by bisection. In this way, p* separates super- 
critical from subcritical solutions and one can view p as 
characterizing the strength of the ensuing gravitational 
self-interaction. 

Not all parametrizations of Cauchy data  will suffice. 
In the vacuum gravity case studied here and in paper 1, 
we know from the work of Christodoulou and Klainer- 
man [4] that  Cauchy data comprised of sufficiently weak 
gravitational waves avoid the future formation of singu- 
larities. In  contrast, Beig and O'Murchadha [5] have 
given sufficient conditions that  configurations of gravi- 
tational waves produce apparent horizons, and presurn- 
ably black holes. As we showed in paper 1 and show 

here, the constructive process of locating the black hole 
threshold works in vacuum collapse because a t  least some 
parametrizations of the initial da ta  can be found to 
smoothly interpolate between weak and strong field lim- 
its. 

Critical behavior is observed as p -t p*. In near- 
critical solutions with p > p*, the black hole mass is 
found to have a power-law dependence on critical sepa- 
ration: MBH K (p -p*)? Choptuik [l] found the critical 
exponent in scalar field collapse to be near ,L? 2 0.37 
and universal in the sense of being independent of the 
details of the initial data. In paper 1, we investigated 
a sequence of initial da ta  representing ingoing gravita- 
tional wave pulses. We also found that  near the critical 
point the black hole mass follows a power law and that  it 
has a critical exponent that  is numerically indistinguish- 
able from the scalar-field case. This power-law behavior 
implies that  in classical general relativity processes ex- 
ist whereby, in principle, infinitesimal black holes can be 
formed, possibly representing a violation of cosmic cen- 
sorship [6]. The power-law behavior also allows an  anal- 
ogy to be drawn to static critical phenomena, suggesting 
a natural association of black hole mass with an  order 
parameter [2]. 

Another connection with standard critical phenomena 
is the observation of self-similarity, or scaling [7 ] ,  in near- 
critical solutions. In both scalar-field collapse and gravi- 
tational wave collapse, the nonlinearities induce the fields 
to oscillate in a scale-&ee, self-similar fashion that  be- 
comes evident in near critical solutions with p = p*. For 
example, in the scalar field case [l] the scalar field 4 
asymptotically approaches a scaling relation (or discrete 
self-similarity) of the form 

'Also at the Laboratory of Nuclear Studies and Center for where p and 7 are logarithms of Proper (areal) radius 
Theory and Simulation in Science and Engineering, Cornell R and central proper time T :  p = 1nR + K and = 

University. ln(T* - T) + K .  The time T*  can only be determined 
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after the search locates p* and it represents the finite ac- 
cumulation time of the infinite number of echoes implied 
by Eq. (1). The constant rc is a family-specific length 
scale. Choptuik [l] found A z 3.4 and evidence that it 
too is universal. As reported in paper 1, we also observed 
oscillations in the vacuum gravitational field in the cen- 
tral region of collapse. Using oscillations of the central 
value of the lapse function to time the echoes, we found 
evidence of scaling in the radial dependence of the met- 
ric. For example, the metric variable q (defined below) 
was found to scale like 

where p = l n r  is the logarithm of the quasi-isotropic ra- 
dial coordinate and t ,  label the coordinate times of max- 
ima in the central value of the lapse function. We dis- 
tinguish between radial and temporal scaling constants, 
though A, = A, is anticipated based upon results in 
scalar-field collapse [I]. In paper 1 we were only able to 
determine a radial scaling constant and found it to be 
A, E 0.59, quite different from the scalar-field case. The 
value of A,, expressing the differences in the logarithm 
of central proper times associated with times tn,  could 
not be determined sufficiently well. 

In this paper, we present results obtained from a new 
sequence of spacetimes generated by initial data that is 
starkly different from that considered in paper 1. The 
properties of near-critical spacetimes in this new se- 
quence, when compared to those of paper 1, provide ev- 
idence of the universality of both P and A,. These new 
calculations also allow us to probe closer to the critical 
point and to estimate the time-scaling constant A,. In 
Sec. I1 we briefly describe the gravitational field variables 
and give the form of the new Cauchy data. In Sec. I11 
our numerical results are discussed and compared with 
our earlier calculations. 

11. TIME-ANTISYMMETRIC CAUCHY DATA 

We compute axisymmetric, asymptotically flat vac- 
uum spacetimes using the 3+1 formalism [8], with the 
maximal time-slicing condition and quasi-isotropic spa- 
tial gauge. Details of the equations we solve can be found 
elsewhere [2,9]. Here we mention the gravitational field 
variables in order to describe the Cauchy data. The line 
element in these coordinates is 

where a is the lapse function, PT and pe are shift vec- 
tor components, + is the conformal factor, and q is an 
even-parity, "dynamical" metric function. The symme- 
tries and the time-slicing condition reduce the number of 
linearly independent extrinsic curvature components to 
three, and for these we use the projection of K i j  on the 
spatial coordinate basis: X = K T T  + 2K9,, Kv,, and 
KTe. The momentum constraints further restrict these, 
so that only one component is freely specifiable. Simi- 
larly, the conformal factor 6 must satisfy the Hamilto- 
nian constraint, making 71 the only freely specifiable part 
of the three-metric. The shift components P' and pe 
and lapse function a are determined by the kinematical 
conditions. 

Previously we investigated imploding pulses of grav- 
itational waves and found critical phenomena [2,10]. 

Here we compute the future development of time- 
antisymmetric initial data (the same solution results if 
K i j  + -Ki j  and t + -t), which are constructed so 
as to concentrate mass energy in a compact region from 
the outset. Primarily because of its simpler structure 
and initial concentration, the time-antisymmetric initial 
data have enabled us to probe closer to the critical point. 
In order to be able to extend our parametrized Cauchy 
data to the weak-field limit and there have analytic ex- 
pressions, we use the form of a general linear solution as 
a basis for construction all of the data sets. The gen- 
eral solution to the equations of linearized gravity [ll] 
for a quadrupole e = 2 wave, when transformed to quasi- 
isotropic coordinates and maximal slices, gives the follow- 
ing time-antisymmetric form for q and K r e  after adding 
outgoing and ingoing parts: 

1 2 ( )  + 1 2 ( )  1(1)(u) - I ( ~ ) ( I I )  I ( u )  + I (u )  + 6 ~ ( - l ) ( u )  - 1(-1)(u) + 3 + 6  T4 
sin 20. 

T T 
(5) 
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The solution involves derivatives of an arbitrary function 
I ( - ~ )  [where d ~ ( ~ ) ( x ) / d x  = I("') and where I itself is 
the quadrupole moment] of retarded u = t - r - ro or 
advanced v = t + r - ro time, with ro an initial radius. 
We choose ro = 0 so the mass energy is concentrated 
near the origin. We set b2(t = 0) = -21(~)(0), which is 
necessary to ensure the regularity of the initial data at the 
origin. Equations (4) and (5) are taken as the forms of 
the freely specifiable data regardless of the proximity to 
the weak-field limit. To compute derivatives conveniently 
and to concentrate the mass-energy initially, the function 
I!-~)(Z) is taken to have the form 

where a is an amplitude parameter, cn = { ( 2 2 5 / 8 ~ ) ~ /  
[(2n + 1)!!])'14 is a normalization constant, A is a width 
parameter, and Hn are Hermite polynomials. [Note that 
these functions ~ ( " ( z )  are not Hermite functions.] We 
consider only the n = 0 case. On substitution of (6) in 
(4) and (5), we find that 7 = 0 initially, while KTs # 0. 
The choice of sign of a is physically significant and we 
examined models with a > 0 only. Values of the param- 
eter a which lead to near-critical future developments 
give initial data that are far from the weak-field limit. 
Consequently, specification of the initial data is com- 
pleted by solving the momentum and Hamiltonian con- 
straint equations to determine A, KV,, and $. The time- 
antisymmetric initial data are pictured in Fig. 1 and corn- 
pared to the data for ingoing pulses that were used in our 
original study (paper 1). 

FIG. 1. Comparison of time-antisymmetric and ingo- 
ing-pulse gravitational wave initial data. The initial radial 
profiles of the freely specifiable parts of the gravitational 
field, 7 (lower frame) and K'e (upper frame), are shown for 
near-critical parameter values. The two data sets have been 
scaled to a common mass or length scale. Time-antisymmetric 
fields are plotted as solid curves while the ingoing-pulse fields 
are shown as dotted curves. 

111. EVIDENCE OF UNIVERSALITY 

All of the results displayed in this paper were com- 
puted at a resolution of 340 radial and 26 angular zones 
(over one quadrant). A comparison was made with mod- 
els computed with 380 by 38 zones, representing a fac- 
tor of 1.5 decrease in discretization scale (the radial grid 
is geometrically spaced). A moving-mesh algorithm 191 
was employed to maintain resolution of the collapsing, 
self-similar region and, for supercritical models, of the 
black holes which form. Gravitational waveforms are ex- 
tracted at several radii between A and 4A and the outer 
boundary of the calculation is set to rout -. 40Mp 21 1712. 
where Mp is the initial total mass [2,12] which is used to 
parametrize all dimensional quantities. Our initial data 
sequence is generated by varying the amplitude parame- 
ter a. The critical value was found to be a* -. 6.387495. 
The number of significant figures given should be taken 
as an indication of the precision of our numerical bisec- 
tion not of absolute accuracy. The actual value of a* 
we determine is dependent on the details of our mesh 
and numerical scheme. For convenience, we have sum- 
marized in Table I the critical parameters determined 
for both the new time-antisymmetric initial data and the 
ingoing-pulse initial data. 

In Fig. 2 we show the central value of the lapse function 

FIG. 2.  Evolution of the central value of the lapse func- 
tion for near-critical evolutions of time-antisymmetric Cauchy 
data. The logarithm (to the base 10)  of the central value of 
the lapse is shown for supercritical (solid curve) and subcriti- 
cal (dotted curve) models as a function of coordinate time in 
units of the packet mass M,. The first 1 2  extrema, approx- 
imately, can be associated with the structure of the initial 
data. The subsequent oscillations reflect echoes generated by 
the nonlinear self-interaction. In the subcritical case the lapse 
approaches unity a t  late times as the mass energy disperses. 
In the supercritical case the lapse finally begins to vanish ex- 
ponentially as a black hole forms. The period of echoing is 
indicated by the horizontal bar. 
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a. -- a ( r  = 0 , t )  for two near-critical evolutions. Each 
of these cases has I (a  - a*)/a*l < 2 x Roughly, 
the first 12 extrema in the oscillations of ao( t )  appear to 
be primarily caused by the particular shape of the initial 
data. The subsequent oscillations are a manifestation 
of the echoing of the field seen in near-critical solutions. 
This determination has been made both experimentally 
by attempting to fit the early lapse oscillations to scal- 
ing laws, and by finding close correspondence between 
the structure of the initial data and that of the initial 
oscillations of the lapse. 

As before, when a black hole forms, its mass is de- 
termined redundantly by calculating the area of the a p  
parent horizon and by analyzing the l = 4 waveform 
and fitting it with a superposition of 1 = 4 quasinormal 
modes [2,9,10]. In Fig. 3, we plot mass as a function 
of critical separation for both the time-antisymmetric 
and ingoing pulse (paper 1) families. The smallest black 
hole we form in the new calculations has a mass MBH = 
0.05Mp. We find that for these time-antisymmetric con- 
figurations trapping more than about one-half of the orig- 
inal wave packet requires a >> a*. This may depend 

TABLE I. Parameters of initial data sequences with error estimates. 

a/a'- 1 
FIG. 3. Critical behavior of black hole mass. The bot- 

tom frame compares, on a linear scale, the black hole 
mass as a function of the critical separation a - a* for the 
time-antisymmetric (solid triangles) and ingoing-pulse (open 
circles) sequences. The masses in the time-antisymmetric 
cases have been scaled by the factor MO = 3.3. The top 
frame shows, on a log-log scale, the best-fit power law for 
black hole mass obtained from six of the nearest-critical, 
time-antisymmetric evolutions. The slope of the fit yields 
a critical exponent value of ,l3 = 0.36. 

strongly on the sign choice of a > 0 and reflect a strong 
divergence of radial null rays in the initial data. The up- 
per frame of Fig. 3 shows that, close to the critical point, 
the black hole mass obeys a power law with an exponent 
p 0.36 - 0.37 that is numerically consistent with that 
found in the ingoing-pulse sequence of paper 1. This co- 
incidence of values of the critical exponent, despite stark 
differences in the initial data, suggests that the value of 
/3 is universal. 

In Fig. 4 we show two radial profiles of the met- 
ric function 9, one obtained from the ingoing-pulse se- 
quence of paper 1 and the other obtained &om the time- 
antisymmetric sequence. Both are from very near-critical 
evolutions. Each family of solutions can be renormalized 
by a change in the mass scale associated with the ini- 
tial data. A change in the mass scale does not affect the 
amplitude of 7 but will alter the radial coordinate, or in- 
troduce a constant offset K in p = In T. This single num- 
ber is all the information about the initial data that the 
solution retains in the asymptotic region (T + 0) and it 
reflects only a trivial change of scale. In Fig. 4, we rescale 
(shift by some K )  one profile to match the other at  small 
radii. The apparent convergence and considerable agree- 

M ~ ~ . M B H / M ~  
0.19 f 0.02 
0.058 3z 0.01 

FIG. 4. Universality of the echoes in the gravitational field. 
Equatorial slices of the metric function q are compared for 
two very near critical, but subcritical, solutions. One of these 
(solid curve) is a time-antisymmetric model while the other 
(dotted curve) is an ingoing-pulse model. Bold parts of the 
curves highlight the self-similar portions of the oscillations. 
A rescaling of the mass scale, implying logr -t logr + n, is 
chosen to demonstrate the agreement between the solutions 
at small radii. 

Max. M B H I M ~  
0.95 3z 0.02 
0.45 f 0.01 

AP 
0.60 f 0.05 
0.54 f 0.05 

f i  
0.37 3z 0.02 
0.36 3z 0.03 

Initial data 
Ingoing pulse 
Time antisymmetric 

A, 
... 

0.51 f 0.03 

a* 
0.928 f 0.002 
6.3875 f 0.0001 
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ment between these separate computations of the echoes 
in the gravitational field lend support to the contention 
that there exists a unique, discretely self-similar solution 
which all precisely critical models approach in the central 
region of collapse and which very near critical solutions 
approach on intermediate length scales. 

The time-antisymmetric data, by enabling us to com- 
pute models nearer the critical point, allow an estimate 
of the time-scaling constant A, to be made. The time of 
a given central lapse extremum labeled by N is given by 

where 7 0  is the central proper time corresponding to the 
beginning of the strong-field oscillations and 670 is the 
duration of the first echo. Thus, the central proper-time 
duration of each echo obeys a power law of the form 
d r / d N  = K exp(-A,N). Each near-critical echo corre- 
sponds to two central lapse oscillations or four extrema. 
In Fig. 5 we show data points and the results of a power- 
law fit for our deepest supercritical model, a = 6.8375. 
Data points are shown for each lapse extremum; each 
near-critical echo corresponds to two central lapse oscilla- 
tions or four such extrema. We obtain a scaling constant 
in the range A, = 0.49 - 0.54. 

The upper panel of Fig. 6 shows overlapped radial pro- 
files of 7 from the same supercritical model. These were 
overlapped after obtaining a best-fit radial scaling con- 
stant of A, = 0.50, which is in agreement with the fit 

FIG. 5. Determination of the time-scaling constant A, for 
a near-critical evolution. The logarithm of the central proper 
time separation of corresponding central lapse extrema is plot- 
ted as a function of oscillation number. The critical oscilla- 
tions are assumed to commence a t  n = 0. The quantity d ~ l d n  
is computed and plotted for all of the four extrema compris- 
ing a single critical oscillation. The best fit to the slope gives 
A, = 0.51 and is indicated as the solid line. 

k supercritical 1 
0 2 ~  7 

FIG. 6. Comparison of radial scaling in supercritical and 
subcritical models. Radial profiles of the metric function 17, re- 
stricted to  the symmetry plane 6' = ~ / 2 ,  are plotted. The up- 
per frame shows profiles from a subcritical solution obtained 
a t  three epoches corresponding to alternate minima of the os- 
cillations in CYO. The lower frame shows four profiles from a 
supercritical solution, which were also obtained a t  times of 
alternate central lapse minima. The radial profiles are shifted 
by p t p t nA, with A, = 0.58 in the subcritical case and 
A, = 0.50 in the supercritical case. 

for A,. The second panel shows the radial profiles from 
a subcritical model. F'rom these data, we obtain an esti- 
mated radial scaling constant of A, - 0.58, which is con- 
sistent with that obtained in paper 1 from ingoing-pulse 
models. We ascribe no significance to this difference but 
rather view it as a measure of the uncertainty in the 
determination of A,. We believe it reflects the present 
limitation in computing in closer proximity of the critical 
point and an associated limitation on the range of length 
scales between which the solution approaches self-similar 
form. 
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